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SIMULATIONS OF HYPERSONIC RAREFIED GAS FLOWS 
USING DSMC-MLG 

1    INTRODUCTION 

Under transitional-flow conditions, the gradients of the macroscopic variables become so 

steep that their scale length, L, is on the order of the average mean free path, A.   When 

the Knudsen number, Kn = A/L, is large (Kn > 0.03), the standard Navier-Stokes (NS) 

formulation cannot be used because the constitutive relations used in the continuum formu- 

lation are not valid.  For the cases where Kn < 0.2, extensive efforts have been made to 

modify both the boundary conditions and the constitutive relations for the Navier-Stokes 

equations (Probstein and Pan, 1963; Oguchi, 1963; Pan and Probstein, 1966; Kogan, 1969; 

Beskok and Karniadakis, 1994) to extend the range of application of the continuum formu- 

lation to the transitional regime. However, the continuum approach, even with the modified 

input or formulation, can only be used over a very small range 0.03 < Kn < 0.2.   For 

Kn > 0.2, it becomes necessary to use a molecular approach, such as molecular dynam- 

ics (Allen and Tildesley, 1990), a Boltzmann equation solution method (Bhatnagar et al., 

1954), or a statistical molecular method such as Direct Simulation Monte Carlo (Bird, 1963). 

The Direct Simulation Monte Carlo (DSMC) method is an approach that has been used 

widely and successfully to predict the properties of transitional-regime flows.   This is a 

numerical particle-simulation technique based on kinetic theory. The gas is represented by 

a large collection of discrete particles, which are subject to intermolecular collisions and 

molecule-surface interactions. Statistical accuracy is obtained by averaging the results over 

many independent simulations, which may be simplified to time-averaging for steady flows. 

DSMC has been applied extensively to describe reentry flows (Moss and Bird, 1984; Moss, 

1986; Bird, 1987;  Moss et al., 1988; Bird, 1990), shock interaction on vehicles at high 

altitudes (Carlson and Wilmoth, 1992), and flows over waveriders (Rault, 1992).   More 

recently, DSMC has been extended to microdynamical flows, such as microchannels used in 

MEMS devices (Oh et al., 1995; Nguyen et al., 1996), and to chemically reacting flows (Dogra 

et al., 1994). DSMC has been shown to be equivalent to solving the Boltzmann equation for 

problems involving monatomic gases undergoing binary collisions (Nanbu, 1982). 
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The DSMC can require very large amounts of computational time and memory to com- 

pute the properties of systems with realistic sizes and densities. The computational time 

required is directly proportional to N, where N is the number of simulated particles. Be- 

cause the statistical error reduces as 1/v/JV, a large number of samples must be collected and 

averaged to reduce the statistical noise. The value of N also determines the grid resolution. 

For three-dimensional flows, or flow with gradients that need high local resolution, the use 

of DSMC becomes extremely limited by available computer resources. Recent attempts to 

reduce computational time have involved both using massively parallel computers to handle 

many particles (Furlani and Lordi, 1989; Wilmoth, 1989; Goldstein and Sturtevant, 1989; 

Dagum, 1991) and applications of new particle tracking methods (Cybyk et al., 1995). 

In a conventional DSMC calculation, the computational domain is divided into a grid of 

spatially fixed cells. However, this approach may result in incorrect prediction of collision 

rates within sparsely populated cells.   In addition, the requirement of small cell sizes in 

regions of large macroscopic gradients (such as shock structures and boundary layers) may 

be violated at later sampling times. Both of these problems are resolved by combining the 

DSMC with the Monotonie Lagrangian Grid (MLG), an algorithm for optimizing particle 

tracking and sorting (Cybyk, 1994). The MLG (Boris, 1986) is a particle sorting method that 

ensures that particles that are adjacent in physical space are also adjacent in index space. 

This means that, given the location of a particle in space (x,y) with array indices (i,j), all of 

the nearest neighbors of this particle are offset by at most a few indices in any direction. This 

is achieved by continually changing the location of data in computer memory. The method 

is easily optimized on most of types of computers, and is extremely efficient on massively 

parallel computers (Oh et al., 1996b). Combining the DSMC and the MLG eliminates the 

fixed spatial grid of the conventional DSMC approach, and results in a method that allows 

automatic grid refinement according to the local number density of the gas, which in turn 

produces higher accuracy for a given grid size (Cybyk et al., 1995). 

In this paper, the combined DSMC-MLG is used on the massively parallel Connection 



Machines to examine the hypersonic, transitional-regime flow through a channel with a wedge 

on the bottom surface. In the past, there have been related studies of hypersonic, high-A'n 

flows on ramps and cones. For example, there have been DSMC calculations of flows over a 

two-dimensional ramp that studied the pressure distribution along the ramp surface (Moss 

et al., 1991), and shock/boundary-layer interactions as a function of ramp angle (Chpoun 

et al., 1993). A study of flows over sharp cones (Taylor et al., 1989) showed that the wake has 

minimal effects on the flow properties along the forebody of the cone, suggesting a similar 

behaviour in the wedge case. These studies address parts of the physics in the problem 

analyzed below. 

Figure 1 is a sketch of the typical flow that would be expected for continuum conditions. 

Oblique shocks start at the leading edges of the channel and the wedge, interact with each 

other, and compress the flow above the slanted part of the wedge (the wedge forebody). 

The trailing edge of the wedge acts as a backward facing step,' so that the flow expands 

past the step to extremely low density. The rarefied gas effects, and the inaccuracies of the 

NS formulation, may be most significant in this region. Downstream of the wedge, the flow 

turns parallel to the channel and forms a reattachment shock. The adverse pressure gradient 

across this shock causes the boundary layer to separate and the flow reverses direction. 

Thus a recirculating region is created behind the wedge. These flow features-, effected by the 

reflected and refracted shocks, are expected to change for a rarefied flow. 

From a fluid dynamic standpoint, the channel-wedge geometry produces a flow field with 

many important aerodynamic features (such as shock waves, expansion fan, and bound- 

ary layers) and their complex interactions, which are not yet well understood for rarefied 

conditions. This study shows the effects of rarefied conditions on the flow structures by com- 

paring the computational results qualitatively to what would be expected in a continuum 

flow in Figure 1. Distributions of macroscopic properties in the flow field are examined. The 

shear stress and thermal loading on the solid surfaces are calculated and their relationship 

in terms of the Reynolds analogy is shown.   The computed results are then compared to 



existing theoretical and computational data. 

From an algorithmic standpoint, the problem studied here expands the application of 

DSMC-MLG to more complex geometry than the channel flows for which it was previously 

used. It is thus possible to test and develop aspects of the combined method, and arrive 

at improved boundary conditions and more specific information or the requirements for 

convergence and the effects of the quality of the grid on the solution. In particular, we discuss 

the problems of generating a grid around the wedge and describe a method for selecting the 

best grid. Then we describe detailed resolution tests in which the grid is successively refined 

and the solutions are compared. We also evaluate what is required to obtain statistically 

converged solution when the time-averaging process is used. 



2    COMPUTATIONAL METHOD 

2.1    Direct Simulation Monte Carlo 

The procedures for a conventional DSMC (Bird, 1963) calculation are shown in the flowchart 

in Figure 2. The computational domain is first divided into spatially fixed cells system. The 

particles are then randomly distributed in the computational domain. These simulated par- 

ticles, each representing one or more real gas molecules, are assigned random velocities that 

are usually based on the equilibrium distribution of an undisturbed gas. To begin the sim- 

ulation, the representative particles are moved for a convection timestep of magnitude Atg. 

This molecular-motion process is modeled deterministically. During this step, interactions 

between molecules and the solid boundaries are simulated, and macroscopic properties along 

the solid surfaces can be calculated. 

The next step involves tracking and indexing all particles. New positions of the molecules 

are sorted. This step, however, is a very time-consuming part of the simulation where 

particles in physical space must first be indexed in computer memory, and their cell locations 

must be determined before collision pairs are selected. This step is where the addition of the 

MLG algorithm provides significant computational benefits. 

The molecular-collision process is modeled probabilistically. Only particles within a given 

grid cell are considered as possible collision partners. Within each cell, a representative 

set of collisions is simulated, and collision pairs are selected randomly. The post-collision 

velocities are determined before particles are allowed to move for the next A^. This process 

of uncoupling molecular motions and intermolecular collisions requires that Atg must be 

smaller than the mean collision time of the unperturbed gas. 

There are serveral collision sampling methods that have been used successfully. Of those, 

the time-counter (TC) technique and the no-time-counter (NTC) technique (Bird, 1976; 

Bird, 1989) are most commonly used. It has been found that the TC method allows the 

acceptance of unlikely collision pairs which results in inaccurate collision rates. In this study, 

we use the NTC technique which corrects this problem. 



At selected time intervals Ata, the macroscopic properties, such as density, temperature, 

and pressure may be sampled. The average of these properties are calculated at the geometric 

centers of the grid cells. When the actual-to-simulated molecule ratio, 5m, is large, there 

is a high level of statistical scattering in the results, and either ensemble-averaging or time- 

averaging is needed to reduce the statistical fluctuations. 

2.2    Monotonie Lagrangian Grid 

The criteria ensuring that particles which are adjacent in physical space are adjacent in index 

space are the monotonicity constraints (Boris, 1986), 

*(«\i) < x{i + 1, j) for 1 < t < Nx - 1, all j 

y(i,j) < y(i,j + 1) for l<j<Nv-l, all i, (1) 

where Nx and Ny define the size of the particle array and x and y are the Cartesian coor- 

dinates, respectively. A system of particles that satisfies the monotonicity conditions is said 

to be in MLG order. 

In the types of simulations considered here, the positions of the particles change con- 

stantly, leading to violation of Equation (1). The MLG order can be restored by swapping 

data stored in adjacent indices' until the monotonicity constraints of equation (1) are satis- 

fied. The data swapping is done locally. This means, for instance, when particles move so 

that they are not of MLG order, their MLG indices and the data describing these particles 

are exchanged, or "swapped," until MLG order is ensured. Figure 3 shows the resorting 

process for a 4 x 4 MLG after a convection time interval Atg. This resorting process results 

in a grid which automatically adapts to the continually changing local number densities of 

the gas. 

The MLG subdivides the Nx x Ny array of simulated particles into nx x ny templates, 

or blocks of nearest-neighbor particles. If nx = ny, the templates are square in index space, 

but not necessarily in physical space. Figure 4 shows an example of a nearest-neighbor 

template that has a population of 5 x 5 particles. When particles within an MLG template 



are allowed to interact, the template becomes analogous to the grid cell in conventional 

DSMC applications. 

Macroscopic properties are computed or "sampled" at the template's center-of-mass and 

depend on the template area. In conventional DSMC. the size of the grid cells are fixed. In 

DSMC-MLG, however, the continual change in the size of the templates requires continually 

updating of the template areas.  The area of each template is computed by a very simple 

and fast routine. Assuming that the Nb boundary particles are labeled as Pi, P2,..., Ppjb in a 

counterclockwise order, the template area At is given by 

I   Nb 

^(=5!(xjyj+i -Xj+iyj), (2) 

where Xj and y; are the coordinates of particle Pj, and xsb+i = ^i, yNb+i = !/i- Calculating 

the template areas in this way does not account for the area between the template. To 

remedy this, each template is assigned to its own area a fraction of the area that is not 

accounted for (Cybyk et al., 1995). As a result, the sum of all corrected template areas then 

equals the area of the entire computational domain. 

2.3    Stochastic Grid Restructuring 

For a given system of particles, there are many possible MLGs that satisfy the monotonicity 

conditions. This is best illustrated by the example in Figure 5 (Oran and Boris, 1987). 

Here, for the same set of 16 particles, three of many possible grids are shown, all satisfying 

the monotonicity criteria. As a result, the quality of these MLGs can vary significantly. 

The MLG obtained by normal swapping of particle data described above may not be good 

enough, while better MLGs often exist for the same system of particles. 

It is possible to find a high-quality MLG for a given spatial distribution of particles by 

using Stochastic Grid Restructuring (SGR) (Sinkovits et al., 1993). When this method is 

implemented in the DSMC-MLG, it is possible to obtain an optimal MLG for the problem 

considered. The SGR consists of three steps: 



• The positions of the particles are temporarily and randomly perturbed by a displace- 

ment {6x,6y), where -xdx3p < Sx < xdiap and -ydiap < Sy < ydiap. During this 

procedure, the unperturbed positions are retained. 

• The MLG swapping procedures are applied to the perturbed particle positions until 

monotonicity conditions are satisfied. 

• With the MLG for the perturbed positions as the starting point, the MLG swapping 

procedures are applied to the unperturbed particle positions until monotonicity condi- 

tions are satisfied. 

The quantities xdisp and yditp can be chosen independently, and their magnitudes greatly 

influence the final MLG. Several SGR iterations may be needed during a simulation timestep 

to improve the MLG. Figure 6 illustrates an example of MLG improvements using SGR. In 

Figure 6a, the MLG for a system of 6 x 6 particles without using SGR is shown. The MLGs 

in Figures 6b and c are obtained with one and two SGR iterations, respectively. 

2.4    Parallelization of DSMC-MLG 

The DSMC-MLG parallelization method used here is a two-level approach (Oh et al., 1996b). 

The first level maps particles to an array of processors, and the second level maps templates 

to an array of processors. These arrays are of different sizes; there axe many more particles 

than templates. This two-level approach allows efficient use of computer storage memory by 

moving the data at the particle-array level to a much smaller array at the template level, 

thus reducing computational memory requirements. 

The flowchart for the parallelized DSMC-MLG algorithm is shown in Figure 7. The 

shaded and striped blocks refer to the steps parallelized at the particle level and template 

level, respectively. Particle-level parallelization was performed for DSMC-MLG processes 

that involve computations and communications at the particle level only. These were the 

initialization, convection, MLG resorting, and SGR processes. Of these, the first two steps 



were the simplest, involving no interprocessor communications. For example, in the convec- 

tion step, all particles are moved simultaneously with their appropriate velocities with one 

single instruction. In this step, some, but not all, of the particles interact with the bound- 

aries. In this case, the parallelization was implemented by selecting only those particles that 

interact with the boundaries, performing the interactions in parallel, then updating their 

velocities and positions. Although this process leads to a load balancing problem, the effect 

on the overall computing time is minor (Oh et al., 1996b). 

MLG resorting and Stochastic Grid Restructuring were also performed at the particle 

level. In DSMC-MLG applications, the particles move only a small distance during each 

timestep, and thus are only slightly out of MLG order. The entire process of resorting into 

MLG therefore requires only nearest-neighbor communication rather than global communi- 

cation. This is ideal, particularly on Connection Machine architecture, for the bubble sort 

algorithm, which compares values of nearest-neighbors of an array on all processors at the 

same time. 

The template area (or cell volume for a three-dimensional application), center of mass, 

and other properties are evaluated at the template level for all templates simultaneously. 

The collision process is also parallelized at the template level. 

2.5    Code Validation 

The current code has been validated by comparing the results obtained to conventional 

DSMC computations by Bird for the Rayleigh problem (Cybyk et al., 1995), the theoretical 

oblique shock angles for the low-Knudsen-number limit in hypersonic flows (Oh et al., 1996b; 

Oh et al., 1996a), and the theoretical Mott-Smith ratio of the mean free path to the shock 

thickness for a monotonic gas (Oh et al., 1996a). 

Computational speed and the DSMC-MLG have been extensively described in the liter- 

ature. Cybyk et al. (Cybyk et al., 1995) showed that serial DSMC-MLG is indeed slower 

than the conventional DSMC approach in standard simplified test problems. However, there 



are significant advantages even in the serial form for more complex problems, such as those 

that require grid adaptivity to resolve high gradients or moving bodies. In the DSMC- 

MLG, there is, by definition, always enough particles in each MLG cell to maintain optimal 

collision statistics (Cybyk et al., 1995). Oh et al. (Oh et al., 1996b) showed very high par- 

allel efficiencies and speed ups of two orders of magnitude or more compared to the serial 

DSMC-MLG, and the efficiency increases dramatically as the number of particles increases. 

DSMC-MLG computations are scalable and allow simulations of millions of particles for 

engineering computation. 

2.6    Inflow-Outflow Boundary Condition 

In the original applications of the DSMC-MLG, the inflow-outflow boundary condition was 

applied in index space. The result was that the downstream boundary could move and 

became distorted in physical space during the simulation (Cybyk*, 1994). However, because 

it is most useful to fix the length of the system a priori, a new inflow-outflow boundary 

condition was developed for this application (Nguyen, 1995). The procedures for maintaining 

this constant-length boundary are illustrated in Figure 8, which show that the boundary 

condition is applied in physical space rather than in index space. After the particles are 

moved for a timestep Atg, those particles which cross over a prescribed boundary are re- 

introduced at the inflow by resetting their velocities to freestream values and distributing 

them at random locations at the inflow boundary. As a result, the total number of simulated 

particles is kept constant for all times, the total molecular mass in the system is conserved, 

and the length of the system stays constant throught the simulation. Finally, the particles 

are resorted into MLG order. These procedures are repeated for every convection timestep. 

10 



3    GRID, RESOLUTION, AND CONVERGENCE 
STUDIES 

Figure 9 illustrates the geometry and the boundary conditions for the channel-wedge flow, 

and Table 1 is a summary of the flow conditions. The computational domain consists of 

a rectangular channel, and a small freestream section upstream of the leading edges of 

the channel. A wedge, with half angle 6, is placed on the bottom surface of the channel 

downstream from the leading edge. The channel is filled with quiescent rarefied helium gas. 

For the conditions in Table 1, the Knudsen number, based on the channel height, is 0.184, 

which is in the transitional flow regime. 

The flow is initialized at Mach 5 everywhere. The wall surfaces are kept at the freestream 

temperature and are modeled as fully diffused boundaries. The upper and lower boundaries 

of the freestream section ahead of the channel are specularly reflecting. Particles that move 

past the outflow boundary are reintroduced at the inflow with their properties reset to 

freestream conditions. 

Initial simulated results showed what appeared to be a "blocked" flow, with a normal 

shock standing near the inlet of the channel (Cybyk, 1994). This phenomena in channel flow 

is also a common experimental problem. Now we initialize the calculation with molecular 

velocities that are a small amount (3%) above those that subsequently flow into the channel. 

This method is very similar to common experimental practices used to overcome choked 

flows that often occur in supersonic and hypersonic nozzles. 

3.1    MLG Grid Generation Problem 

The standard MLG sorting process does not take into account the presence of an obstacle 

in the flow field. As a result, in the vicinity of the obstacle, an MLG template could contain 

particles from both the front and back sides of the obstacle. Such a template crosses the solid 

boundaries in physical space, even though the ordering of the particles satisfies monotonicity 

conditions.  This is illustrated in Figure 10, where templates cross the wedge boundaries, 

11 



and one of the centers of mass is inside the wedge and therefore outside of the computational 

domain. 

Figure 11 shows the evolution of the grid obtained by connecting the centers-of-mass of 

the templates. The presence of a grid point inside the wedge corresponds to the presence of 

a "saddled" template, one that saddles the wedge. These templates have extra area inside 

the wedge, which in turn causes the total area of all the templates to be larger than the 

computational area. The macroscopic properties at the centers-of-mass of these templates 

are incorrectly predicted as a result of the extra area. In addition, the particles in front 

of and behind the wedge are possible collision partners, which would not occur in a real 

flow. Therefore, to predict the flow properties accurately, it is necessary to make the MLG 

conform to the geometry. 

This problem is resolved by a combination of two techniques: 1) concentration of a 

large number of particles along the wedge surfaces initially, and 2) sorting locally in the 

x-direction first before applying MLG sorting. Figure 12 shows that the resulting MLGs 

better conform to the wedge initially, and continue to do so during the simulation. There 

is only one center-of-mass inside the top-right corner of the wedge. However, the extra area 

this template adds is very small, and the particles are prevented in any event from crossing 

the solid boundaries. Any effect on the final solution is thus negligible, and is reduced with 

increasing grid resolution. 

This approach produced a reasonable grid for the channel-wedge geometry. It was also 

applied successfully on a converging-diverging nozzle configuration (Nguyen, 1995). For more 

complex geometries, however, it might not give satisfactory results, and other techniques 

should be used. In one approach, a large number of particles concentrated on a surface 

could be used to define the solid boundary and form templates. They would not be allowed 

to move during the convection step, but would be allowed to collide with gas particles during 

surface interactions. Such extensions are currently being developed. 

12 



3.2    Grid Optimization 

In Figure 13a, the grid initially used for the simulation sometimes slopes in the direction 

opposite to the flow structures, especially in the region upstream of the wedge. This results 

in a high level of fluctuations in the solution (Nguyen, 1995; Nguyen et al., 1994). A better 

MLG would result in a smaller fluctuation level and smoother results. 

Several parameters can be used as a measurement of the quality of an MLG. These include 

the average link lengths between nearest neighbors and the average of the normalized dot 

products of the vectors joining the nearest neighbors with the unit normals. The link lengths 

are defined as 

xiinkihj) = |r(i + l,j) - r(i, j)\, 

yunk{i,j) = \r(i,j + 1) - r(t, j)|, 

where r is the vector joining the nearest neighbors. The dot products are defined as 

x(i + l,j)-x(i,j) 
XdP(i,j) = 

VdP(i, j) = 

Xlink{i,j) 
y(i,j + l)-y{i,j) 

yunk(i,j) 

For a well-structured MLG, the average link lengths, which indicate the average inter- 

particle distance, are minimized. The average dot products are a measure of the relative 

direction between the nearest-neighbor link and the unit normals, or the orthogonality of the 

MLG grid. For example, if a set of four particles is arranged such that each particle resides 

on the lattice of a square, both the x and y dot products equal unity. A well-structured 

MLG has the largest possible average dot products. 

A series of simulations was performed to examine the effects of different MLGs on the 

qualities and convergence of the computed flow. A nondimensional SGR displacement pa- 

rameter, 8, is defined as 

S = ^, (3) 
Ar 

13 



where Ar is the averaged template size. Five different values of 8 (0.0, 0.5, 1.0, 2.0, and 4.0) 

were considered for the same grid resolution of 1504 templates (51,144 particles). Figure 13 

shows the MLGs of the steady-state solutions obtained after 2000 timesteps. There is es- 

sentially no difference in the computing time of the simulations with and without the SGR. 

Once the SGR is used, the slope of the y grid reverses direction and is along the direction of 

flow structures (Figures 13b-e). The higher the value of S, the more orthogonal the MLG. 

The average link lengths, x/infc and y/infc, are shown in Figure 14 as a function of the 

number of timesteps for all five cases. The values of x/tnfc remain fairly constant during 

the simulation, and are approximately the same for all cases. The values of yiink fluctuate 

widely for the case without the SGR. However, with the SGR, yunk stays fairly constant with 

time. When S = 2.0, ylink is smallest, indicating that the average inter-particle distances are 

minimized. 

The average dot products, xdp and ydp, are shown in Figure 15 as a function of the number 

of timesteps. The average x dot products do not vary much. However, the average y dot 

products fluctuate widely without the SGR and remain essentially constant after the first 

few hundred timesteps for the other cases. Again, the MLG with S = 2.0 has the highest 

dot products and this results in the most orthogonal grid. These results are consistent with 

those for the average link lengths. 

Since without the SGR, y,ink and ydp fluctuate widely, even after 2000 timesteps, the 

flow field has high level of statistical scattering, and is unfit for time-averaging. An optimal 

MLG appears to be the case where S = 2.0. However, it is unclear which grid gives the best 

solution for this problem since grid orthogonality is not required in these calculations. When 

S = 0.5, the MLG is highly adapted to the local number density of the flow. As S increases, 

the orthogonality of the MLG increases, but it appears to conform less to the flow structure. 

An answer was found in the density contours in Figure 16 that compares the solutions of 

the highest quality MLG (S = 2.0) to the MLG most closely resembling the flow (S = 0.5). 

The flow fields were obtained by averaging 500 timesteps after the steady state was reached 
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after 2000 timesteps. Even though the results appear somewhat similar, a closer comparison 

show that for 8 = 0.5, the solution is better resolved, especially in the regions of the oblique 

shocks and their interaction at the channel centerline. Figure 17 shows that the density 

and temperature along the centerline of the channel are indeed very similar, except that the 

8 = 0.5 case shows somewhat higher values of density in the shock-interaction region. The 

analysis of the flow field solution, presented in a later section, is for the 8 = 0.5 case. 

3.3    Grid Resolution Study 

A series of simulations of the channel-wedge problem was performed to study the sensitivity 

of the results to the number of MLG templates. Table 2 gives the properties of four different 

grids, with the number of templates ranging from 900 to 1800 and the number of simulated 

particles ranging from 32,400 to 64,800. In all of these cases, the SGR parameter 8 is 2.0. 

The analysis could also be performed for 8 = 0.5, the most adaptive grid case. However, as 

seen in the previous section, results from the two cases are essentially the same, and therefore 

no significant effect on the analysis should be expected. 

The grids for the four cases are shown in Figure 18 and the corresponding density contours 

are shown in Figure 19. The flow features obtained using the coarsest grid are not nearly as 

well resolved as those using 1504 and 1800 templates, which are very comparable. Figures 20 

show the density distributions along the bottom and top surfaces of the channel. The results 

are comparable for all cases except the coarsest resolution. In particular, the differences 

between the 1504- and 1800-template cases are small, indicating grid-independence of the 

solution. Because a simulation on the 1504-template grid requires 35% less computing time 

than that on the 1800-template grid, the 1504-template grid is used for further studies. 

3.4    Time-A veraging and Convergence 

Due to the high ratio of actual to simulated molecules, there are large statistical fluctuations 

which must be greatly reduced to obtain a meaningful solution. This is be accomplished by 

time-averaging the solution once the steady state is established.  Using the 1504-template 
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grid with S = 0.5, the flow reaches steady state after about 1000 timesteps. The simulation 

was then continued for a few hundred additional timesteps before time-averaging was started. 

Figure 21 shows the density contours averaged over 40, 100, 300, and 500 timesteps 

beyond steady state. This is equivalent to averaging the solution over 40, 100, 300, and 500 

independent ensembles, respectively. As the number of averaged timesteps (or ensembles) 

increases, the statistical fluctuations decrease. The results for the 300 and 500-timestep 

averagings are practically the same, indicating convergence. 

Since the location and size of the MLG templates may change with time, it is interesting 

to consider whether the grid moves, and how much, during the time-averaging process. The 

calculations showed that at approximately 700 timesteps into the pre-averaged solutions, 

the grid no longer changed significantly. This is in agreement with the results described in 

Figures 14 and 15, which show the properties of the MLG — the averaged link lengths and 

dot products — remain constant with time after the few hundred initial timesteps. The 

MLGs taken at various sampling times, shown in Figure 22, are basically identical. 

Figure 23 compares the density along the top and bottom surfaces of the channel for 

time-averaging stages of 40, 300, and 500 timesteps. The distributions are essentially the 

same, with the 40-timestep case showing more fluctuations. 
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4    ANALYSIS OF THE FLOW FIELD 

4.1    Flow Features and Surface Properties 

• Figure 24 shows the converged solution, represented by density, temperature, pressure, and 

Mach number contours, for the 1504-template grid with S = 0.5. The flow field is similar to 

that in Figure 1, only now all of the flow structures are very diffused. However, it is still 

possible to identify many features. 

The density contours in Figure 24a show the boundary-layer growth along the solid 

surfaces. The thickness of the boundary layers increases as the flow moves downstream. 

Near the outflow boundary, the flow expands as it leaves the channel, causing the boundary- 

layer thickness to decrease. The temperature contours in Figure 24b show the temperature 

of the gas in the core of the channel is much higher than that near the walls, which are held 

at a constant temperature of 273 K. As a supersonic flow expands through a rarefraction 

fan, the density, temperature, and pressure of the gas decrease. This effect is seen in the 

region immediately downstream of the trailing edge of the wedge in Figures 24a — c. 

The pressure contours.in Figure 24c show two oblique shocks emanating from the upper 

and lower leading edges of the channel and intersecting at about 10 cm downstream of the 

leading edges. The oblique shock angle is ~ 22°. This was estimated by measuring the 

angle of the pressure contours at the leading edge of the channel. The pressure contours also 

show that there is a third oblique shock at an angle of ~ 40° emanating from the leading 

edge of the wedge. All of these shock structures interact near the centerline of the channel 

above the wedge forebody in a way similar to that shown in Figure 1. In the upper-half of 

the channel, a refracted shock interacts with the boundary layer near the upper wall and 

reflects downstream. In the lower-half of the channel, a weaker refracted shock merges with 

the rarefraction region that was caused by the supersonic expansion of the flow around the 

sharp corner of the trailing edge of the wedge. The flow then eventually turns parallel to the 

wall to form a very diffuse viscous layer downstream. In a continuum flow as in Figure 1, this 

layer would be a reattachment shock. The adverse pressure gradient (Figure 24c) across this 
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reattachment region causes the boundary layer to separate, and a reverse flow is developed 

just behind the trailing edge of the wedge. The pressure reaches a local maximum at the 

bottom wall near i = 33 cm as the flow crosses the reattachment layer. The Mach contours in 

Figure 24d show a supersonic core flow between the subsonic boundary layers and expansion 

near the outflow boundary. 

Figures 25 shows the density, pressure, temperature, and magnitude of velocity along the 

top and bottom solid surfaces of the channel. Along the bottom surface, at about x = 5 

cm, the pressure rises sharply across the leading-edge shock and increases significantly along 

the wedge surface due to the presence of the second oblique shock. Just ahead of the wedge 

trailing edge, the pressure drops across the rarefraction region as the flow expands, then 

increases again as the boundary layer develops. Along the top surface, the pressure increases 

across the leading-edge shock in the same manner as along the bottom surface. The pressure 

then rises markedly at about x = 15 cm due to the interactions between the boundary layer 

and the refracted shock. 

Figure 25c shows the temperature of the gas adjacent to the walls. From this we see that 

the temperature jump is about four times the wall temperature near the leading edge and 

decreases rapidly further downstream. The magnitude of velocity in Figure 25d is what is 

called the velocity slip along the walls. At the entrance to the channel, the slip velocity is 

high because the density is low. As the boundary layer develops, downstream, the density 

increases and the slip velocity drops sharply to near zero. A small increase in the slip velocity 

near the exit plane, x = 40 cm, indicates that the flow expands as it leaves the channel. 

The development of the viscous boundary layers is shown in Figure 26 by the velocity 

profiles at various locations along the x-axis. At the leading edge of the channel, the bound- 

ary layers begin to form, and they grow as the flow moves downstream. The velocities are 

negative at the wall for 20 cm < x < 22 cm, indicating a reverse flow. 

The development of the thermal boundary layers is shown in Figure 27 by the temperature 

profiles at various locations along the x-axis. Compared to the velocity profiles in Figure 26, 
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the temperature profiles are not as symmetric, reflecting different shock strengths due to the 

presence of the wedge. The temperature profiles also show the temperature jump near the 

walls. 

4.2    Comparisons of Flow Properties 

For an inviscid flow, with no boundary layers and infinitely thin walls, the leading-edge 

shocks degenerate to Mach waves. For Af«, = 5 flow, the angle of such a Mach wave would 

be 11.54°, which is much smaller than the 22° of the shock angle calculated in this study, 

indicating the displacement effect of the boundary layer. The boundary layer grows rapidly 

in the leading edge region and acts as an effective body that deflects the incoming streamlines 

upward. As a result, the shock at the leading edge is nearly normal to the surface of the 

channel. Across this shock at the surface, P2/P1 is approximately 5. This is much smaller 

than the pressure rise of 29 across a continuum normal shock, and is a consequence of the 

low density conditions. 

When a high-velocity flow is slowed by the presence of a surface boundary, the viscous 

dissipation in the boundary layer transforms the high kinetic energy of the molecules into 

internal energy of the gas. This causes a large increase in the gas temperature, which in 

turn causes the viscosity coefficient to increase. The net effect is that the boundary layer 

becomes thicker and grows more rapidly than it would for lower-speed flows at the same 

Reynolds number (Anderson, 1989). This boundary layer causes a major displacement effect 

on the outer inviscid flow. In turn, the changes in the inviscid flow affect the properties of 

the boundary layer. This phenomenon is called viscous interaction. 

In continuum flow, the viscous interaction near the leading edge may be described by the 

similarity parameter % defined as (Anderson, 1989) 
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The quantity C is the Chapman-Rubesin parameter and is defined as 

C = pu.fi w 

Poo^oo' (5) 

where the subscript w indicates wall properties. In the continuum flow regime, x dictates 

the induced pressure along the surface of a flat plate. For a cold-wall flat plate, the induced 

pressure for a weak interaction is (Hayes and Probstein, 1959) 

{- = 1 + 0.078*. (6) 

In low-density flows, the pressure interaction near the leading edge should be less pro- 

nounced than that in the continuum flow due to slip effects. Figure 28 compares the pressure 

near the leading edge of the top surface of the channel with that calculated by Equation (6). 

The pressure in the low-density case is consistently smaller than that in the continuum ap- 

proximation. Also, the pressure drop in the vicinity of the leading edge (the region indicated 

by the smaller values of l/(Ax) in the abscissa) is due to the fact that the leading-edge shock 

diffuses out over the leading edge of the channel. 

Figure 29 compares the results from the present study to those obtained from a DSMC 

calculation (Chpoun et al, 1993) for a near-continuum, M«, = 4 flow over a 20° compression 

corner. Figure 29a shows the surface pressure distribution as a function of the nondimen- 

sionalized distance x/Lf, where Lj is 5 cm, the length of the flat section upstream of the 

leading edge of the wedge. Due to the higher freestream Mach number, the pressure in the 

present study is consistently higher than that from Chpoun et al. 

Figure 29b compares the velocity distribution along the ramp surface. The more rarefied 

condition (Kn = 0.184) in the present work resulted in a more gradual slip in the velocity 

adjacent to the surface. In contrast, the near-continuum condition (Kn = 0.0047) in Chpoun 

et al. caused a much sharper decrease near the leading edge of the flat section. 

4.3    Skin Friction and Heat Transfer 

The skin friction on the walls of the channel is calculated by averaging the parallel momentum 

transfer of the molecules impinging on the surfaces. Let the parallel momentum of an incident 
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molecule be Pj„c, and that of the same molecule after reflection be Preji, such that 

Pinc = mVj|inc, 

Preji = ™Mlre/r (") 

where m is the mass of each molecule, and Vj| is the component of velocity parallel to the 

surface. The total change in the parallel momentum of the molecule, AP||, is given by 

Afj| = Pinc - Prefi. (8) 

The skin friction, TW, on a small surface area, AA, over an incremental time, Atg, generated 

by the impinging molecules is 

where the summation sign indicates the total contribution from all impinging molecules. 

During a DSMC calculation, the skin friction on the surfaces of the solid walls may be 

sampled at any time using Equation (9). The heat flux, qw, at the walls may be calculated 

in a similar manner by replacing the parallel momentum with the energy of the impinging 

molecule. 

The results are presented in terms of the dimensionless skin friction coefficient, cj, and 

the Stanton number, st, which are given by (Anderson, 1989) 

c' = ITT7T , (10) 
2 feve 

and 

Qw 
st = peVe(haw - hw) ' (11) 

where the subscript e refers to conditions at the edge of the boundary layer, hw is the 

enthalpy at the wall, and haw is the enthalpy if the wall is assumed to be adiabatic. The 

adiabatic wall enthalpy is evaluated in terms of the recovery factor, r, by (Anderson, 1989) 

V2 

haw = he + r~Y . (12) 
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The recovery factor is taken equal to y/Fr, where Pr is the Prandtl number (Anderson, 

1989). For helium, Pr = 0.7 (White, 1974). In this study, the freestream conditions are 

assumed at the edge of the boundary layers. 

The skin friction and heat transfer to the top and bottom surfaces of the channel are 

shown in Figure 30. Along the bottom surface, the value of cf is highest near the leading 

edge where the high-velocity molecules are slowed down substantially by the solid boundaries. 

The skin friction coefficient decreases downstream, then increases along the wedge surface, 

reaching a local maximum near the end of the wedge. Behind the trailing edge of the wedge, 

cf becomes negative in the recirculation region. Futher downstream, c/ stays fairly constant, 

with a slight increase near the exit plane where the flow expands. 

Along the top surface, c} peaks near the entrance plane and decreases downstream. A 

local maximum of c, occurs near x = 25 cm as a result of the interaction between the refracted 

shock and the boundary layer adjacent to the top wall. The distributions of st are similar to 

those of cf. The Stanton number is positive everywhere, including the recirculating region, 

indicating the transfer of heat from the flow to the walls. Figure 30 represents an average of 

1000 timesteps. These figures indicate that the skin friction and heat transfer require more 

timestep averaging than the state properties to obtain the same level of fluctuations. 

The results along the top wall agree well with those obtained by a DSMC calculation 

of a hypersonic flow along a flat plate (Moss et al., 1991). In their results, both the skin 

friction and heat transfer peak near the leading edge and decrease downstream. The peak c, 

in Moss et al. (1991) is approximately 0.07 compared to 0.056 for the top wall in this study. 

The peak st in Moss et al. (1991) is 0.02, whereas it is about 0.03 for the top wall. The 

quantitative differences are due to the different freestream and wall temperature conditions. 

In incompressible flow theory, the Stanton number and the skin friction coefficient along 

a laminar flat plate are related by the Reynolds analogy (Anderson, 1989), 

1 _2 st = Cf- Pr 3. (13) 

Even though, the flow is hypersonic in this study, it is interesting to see how much the results 
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in Figure 30 deviate from the above relation. Figure 31 compares two distributions of the 

Stanton number: one from the DSMC simulations (Figure 30), and the other calculated by 

substituting the computed cj into the Reynolds analogy of Equation (13). In Figure 31a, 

the two distributions of st along the top wall compare very well, except for the region near 

the interaction between the refracted shock and the boundary layer. In Figure 31b, the 

two distributions are about the same along the flat section of the bottom wall ahead of 

the wedge. Downstream of this section, however, the Reynolds analogy values deviate from 

the DSMC values due to the presence of the wedge. The results in these figures show that 

the Reynolds analogy might still be applicable for high-M, high-A'n flow along flat plates 

with the freestream and wall temperature conditions similar to those in this study. Other 

freestream and wall conditions must be investigated before the Reynolds analogy can be 

generalized. 
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5    CONCLUSION 

Simulations of a rarefied, high-/fn flow of helium gas through a channel with a wedge have 

been performed using the combined DSMC-MLG algorithm. These simulations were used 

both to describe the flow features and their interactions under rarefied conditions, and to 

develop and test a new approach to the DSMC algorithm. Because this work had a fluid 

dynamic as well as algorithmic objective, an extensive series of computations was performed 

for a single physical system. 

The resulting computations present a highly resolved picture of a flow field that was 

compared qualitatively to what would be expected in a continuum flow. Where possible, the 

results were compared quantitatively to theoretical analysis and computations. Since the 

flow is so rarefied, the flow features, such as oblique shocks, rarefraction fan, and boundary 

layers, and their interactions are diffuse. The pressure jump across the leading-edge shock 

at the surface is considerably less than that for a continuum normal shock. Comparisons 

to hypersonic weak viscous interaction theory for continuum flow show that the pressure 

interaction near the leading edge is less pronounced under rarefied conditions. Downstream 

of the trailing edge of the wedge, the reattachment shock that is typical in a continuum flow 

degenerates into a very diffuse viscous layer. 

The effects of low-density conditions are also shown in the slip in velocity and temperature 

of the gas adjacent to the solid surfaces. The slip velocity is highest at the entrance of 

the channel where the density is low, and decreases more gradually than that for a near- 

continuum conditions in the work of Chpoun et al. (1993). Similarly, the temperature jump 

peaks near the leading edges reaching approximately four times the wall temperature, and 

then decreases further downstream as the boundary layers develop. 

The skin friction and heat transfer calculations show that peak shear force and thermal 

loading occur near the leading edges of the channel. The effects of the wedge on the flow 

field are shown in local maxima of skin friction coefficient and Stanton number distributions 

on the bottom wall. In addition, viscous interactions between the refracted shock and the 
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boundary layer near the top wall result in an increase in skin friction and heat transfer. These 

calculations compare fairly well with DSMC calculations on a flat plate by Moss et al. (1991). 

The Stanton number distribution along the top wall compare well with that calculated by 

the Reynolds analogy for incompressible boundary-layer flow, suggesting that the Reynolds 

analogy might be applicable for high-speed, rarefied flow along flat plates under conditions 

similar to those in this study. These results, along with the slip velocity and temperature 

jump data, provide a benchmark for testing phenomenological and theoretical models that 

attempt to extend the applicability of the NS equations to other flow regimes. 

Another important aspect in this study is the development and implementation of a new 

inflow-outflow boundary condition. Previous applications of DSMC-MLG used an inflow- 

outflow boundary condition that causes the downstream boundary to move in physical space 

during the simulation. The new boundary condition effectively keeps the length of the 

the channel-wedge geometry constant throughout the simulation while conserving the total 

molecular mass in the system. 

The MLG provides the DSMC with automatic grid adaptation according to local number 

density and gives correct collision rates everywhere in the flow field. The DSMC-MLG 

combination, when implemented on a massively parallel computer, is extremely efficient and 

allows simulations of very large numbers of particles. For the specific problem of the flow 

through a channel-wedge, a typical calculations of 65,000 particles took about 20 minutes or 

less to converge on the 256 node CM-5. There were a number of practical questions about 

using the DSMC-MLG that have now been resolved. This work has provided substantial 

insight into issues of the grid generation in the presence of an obstacle, the resolution required 

in terms of the number of simulated particles, the effects of grid structure on the solution 

and how to find an optimal grid, and what is required in terms of averaging the solution to 

eliminate the effects of statistical fluctuations. 

25 



Acknowledgment 

The authors acknowledge the financial support by the Post-Doctoral Fellowship from the 

American Society for Engineering Education, the Minta-Martin Fellowship, the Office of 

Naval Research through the Naval Research Laboratory, and the Defense Advanced Research 

Projects Agency. We also wish to thank B. Z. Cybyk and J. N. Moss for their valuable help. 

References 

Allen, M. P. and Tildesley, D. J. (1990). Computer Simulations of Liquids. Clarendon Press 
Oxford. 

Anderson, Jr., J. D. (1989). Hypersonic and High Temperature Gas Dynamics. McGraw-Hill, 
Inc., New York. 

Beskok, A. and Karniadakis, G. E. (1994). Simulation of heat and momentum transfer in 
complex microgeometries. Journal of Thermophysics and Heat Transfer, 8(4):647-655. 

Bhatnagar, P. L., Gross, E. P., and Krook, M. (1954). Phys. Rev., 94:511. 

Bird, G. A. (1963). Approach to translation^ equilbrium in a rigid sphere cas. Phys Fluids 
6:1518-9. 

Bird, G. A. (1976). Molecular Gas Dynamics. Clarendon Press, Oxford. 

Bird, G. A. (1987). Nonequilibrium radiation during reentry at 10km/s. AIAA Paper no. 
87-1543. 

Bird, G. A. (1989). Perception of numerical methods in rarefied gasdynamics. In Progress 
in Astronautics and Aeronautics. Vol. 118, edited by E. P. Muntz, AIAA, Washington, 

Bird, G. A. (1990). Application of the direct simulation monte carlo method to the full 
shuttle geometry. AIAA Paper no. 90-1692. 

Boris, J. P. (1986). A vectorized "near-neighbors" algorithm of order n using a monotonic 
logical grid. Journal of Computational Physics, 66:1-20. 

Carlson, A. B. and Wilmoth, R. G. (1992). Shock interference prediction using direct simu- 
lation monte carlo. AIAA Paper no. 92-0492. 

Chpoun, A., Lengrand, J. C, Cohen, L., and Heffner, K. S. (1993). Dsmc numerical inves- 
tigation of rarefied compression corner flow. AIAA Paper no. 93-3096. 

Cybyk, B. Z. (1994). Combining the Monotonic Lagrangian Grid with Direct Simulation 
Monte Carlo; a New Approach for Low-Density Flows. PhD thesis, Aerospace Engi- 
neering Dept., University of Maryland. 

26 



Cybyk, B. Z., Oran, E. S., Boris, J. P., and Anderson, J. D. (1995). Combining the monotonic 
lagrangian grid with a direct simulation monte carlo model. Journal of Computational 
Physics, 122:323-334. 

Dagum, L. (1991). Three dimensional direct particle simulation on the connection machine. 
AIAA Paper no. 91-1365. 

Dogra, V. K., Moss, J. N., Wilmoth, R. G., Taylor, J. C, and Hassan, H. A. (1994). Effects 
of chemistry on blunt body wake structure. AIAA Paper no. 94-0352. 

Furlani, T. R. and Lordi, J. A. (1989). A comparison of parallel algorithms for the direct 
simulation monte carlo method ii: Application to exhaust plume flowfields. AIAA Paper 
no. 89-1167. 

Goldstein, D. and Sturtevant, B. (1989). Discrete velocity gasdynamics simulations in a 
parallel computing environment. AIAA Paper no. 89-1668. 

Hayes, W. D. and Probstein, R. F. (1959). Hypersonic Flow Theory. Academic Press, New 
York. 

Kogan, M. N. (1969). Rarefied Gas Dynamics. Plenum Press, Translated from Russian by 
Leon Trilling, New York. 

Moss, J. N. (1986). Numerical simulations of rarefied reentry flows. AAS 86-348. 

Moss, J. N. and Bird, G. A. (1984). Direct simulation of transitional flow for hypersonic 
re-entry conditions. AIAA Paper no. 84-0223. 

Moss, J. N., Bird, G. A., and Dogra, V. K. (1988). Nonequilibrium thermal radiation for an 
aeroassist flight experiment vehicle. AIAA Paper no. 88-0081. 

Moss, J. N., Price, J. M., and Chun, C. (1991). Hypersonic rarefied flow about a compression 
corner - dsmc simulation and experiment. AIAA Paper no. 91-1313. 

Nanbu, K. (1982). Theoretical basis of the direct simulation monte carlo method. Journal 
of the Physical Society of Japan. 

Nguyen, T. X. (1995). Enhancements of the Parallelized DSMC-MLG Method for Applica- 
tions to Complex Hypersonic Transitional-Regime Flows. PhD thesis, Aerospace Engi- 
neering Dept., University of Maryland. 

Nguyen, T. X., Oh, C. K., Saint-Martin-Tillet, X. N., Piana, J. V., and Oran, E. S. (1996). 
Knudsen-number effects in high-speed microchannel flows. In Proceedings of the 20th 
International Symposium on Shock Waves. 

Nguyen, T. X., Oran, E. S., Anderson, J. D., Oh, C. K., Sinkovits, R. S., and Cybyk, B. Z. 
(1994). Hypersonic low-density flow computations using dsmc-mlg on massively parallel 
supercomputer. 

Oguchi, H. (1963). Leading edge slip effects in rarefied hypersonic flow. In Rarefied Gas 
Dynamics. Supplement 2, Vol. II, edited by J. A. Laurmann, Academic Press, N.Y. 

27 



Oh, C. K., Oran, E. S., and Cybyk, B. Z. (1995). MicroChannel flow computed with the 
dsmc-mlg. AIAA Paper no. 95-2090. 

Oh, C. K., Oran, E. S., and Sinkovits. R. S. (1996a). Computations of high-speed, high- 
knudsen-number microchannel flows, to appear in Physics of Fluids. 

Oh, C. K., Sinkovits, R. S., Cybyk, B. Z.. Oran, E. S., and Boris, J. P. (1996b). Parallelization 
of dsmc combined with the monotonic lagrangian grid. AIAA Journal. 

Oran, E. S. and Boris, J. P. (1987). Numerical Simulation of Reactive Flow. Elsevier Science 
Publishing. 

Pan, Y. S. and Probstein, R. F. (1966). Rarefied flow transition at a leading edge. In 
Fundamental Phenomena in Hypersonic Flow, edited by J. G. Hall, Cornell University 
Press, Ithaca, N.Y. 

Probstein, R. F. and Pan, Y. S. (1963). Shock structure and the leading edge problem. In 
Rarefied Gas Dynamics. Supplement 2, Vol. II, edited by J. A. Laurmann, Academic 
Press, N. Y. 

Rault, D. F. G. (1992). AIAA Paper no. 92-0306. 

Sinkovits, R. S., Boris, J. P., and Oran, E. S. (1993). A technique for regularizing the 
structure of a monotonic lagrangian grid. Journal of Computational Physics, 108:368- 
72. 

Taylor, J. C, Moss, J. N., and Hassan, H. A. (1989). Study of hypersonic flow past sharp 
cones. AIAA Paper no. 89-1713. 

White, F. M. (1974).  Viscous Fluid Flow. McGraw-Hill, Inc. 

Wilmoth, R. G. (1989). Direct simulation monte carlo analysis on parallel processors. AIAA 
Paper no. 89-1666. 

28 



Table 1: Flow conditions for the channel-wedge simulation. 

Definition Flow Condition 
Parameter 

Value 

length of channel ^moi 35 cm 
height of channel t/max 7.5 cm 
wedge half-angle e 10° 
freestream density Pug 2.0e-9 g/cm3 

freestream temperature Too 273 K 
freestream Mach number Moo 5 
wall temperature Tw 273 K 
freestream mean free path AUg 1.38 cm 
Knudsen number Kn = ^ufl / Vmax 0.184 
number of particles/template Nt 6x6 
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Table 2: Computational parameters for the grid sensitivity study. 

Number of   Grid Size      Molecules Total Number of 
Templates per Template   Simulated Molecules 

900 75x12 6x6 32400 
1200 80 x 15 6x6 43200 
1504 94 xl6 6x6 54144 
1800 100 x 18 6x6 64800 
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Figure 1: A typical continuum flow field in the channel-wedge geometry. 
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Figure 2: Flowchart for a conventional Direct Simulation Monte Carlo computation. 
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Figure 3: Example of an MLG resorting process. 
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Figure 4: Example of a 5x5 template of nearest neighbors. 
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Figure 5: An example of three grids that are consistent with the same MLG monotonicity 
constraints [Oran and Boris, 1987] 
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a) b) c) 

Figure 6: Example of MLGs for the same set of particle locations, a) Before applying SGR, 
b) after one SGR iteration, and c) after two SGR iterations [Sinkovits et al., 1993] 
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Figure 7: A flowchart of the parallelized DSMC-MLG algorithm [Oh et al., 1995]. 
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Figure 8: The procedures used in the constant-length boundary condition, a) The particles 
are move for a At,, b) those that move past x = xmax are re-introduced at the inflow, c) 
these particles are assigned freestream conditions. 
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Figure 9: Schematic of the channel-wedge flow numerical experiment. 
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center of mass 

Figure 10: Schematic showing how templates may cross solid boundaries. 
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Figure 11: MLGs for the channel-wedge simulation. Grids do not conform to the geometry, 
a) Initial grid, b) after 50 timesteps, c) after 100 timesteps. 
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Figure 12:  MLGs for the channel-wedge simulation.   Grids conform to the geometry,  a) 
Initial grid, b) after 50 timesteps, c) after 100 timesteps. 
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Figure 13: MLGs of the channel-wedge flow problem using SGR with five different S values. 
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Figure 14: Average link lengths for the MLGs shown in Figure 13. 
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Figure 15: Average dot products for the MLGs shown in Figure 13. 
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Figure 16:   Comparsion of density contours of the channel-wedge flow field for different 
displacement parameters. 
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Figure 17: Comparsion of computed density and temperature distributions along the cen- 
terline of the channel. 
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Figure 18: MLGs for the grid resolution study. 
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Figure 19: Density contours for the four grid resolutions. 
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Figure 20: Comparison of density distributions for the four grid resolutions: a) top surface, 
b) bottom surface of the channel. 
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Figure 21: Flow field density contours for a) 40, b) 100, c) 300, and d) 500 time-averaging 
steps. 
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Figure 22: Comparison of 1504-template MLGs for a) 40, b) 100, and c) 500 time-averaging 
steps 
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Figure 23: Comparison of density distributions for various time-averaging steps. 
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Figure 24: Converged solution of the channel-wedge simulation. 

54 



1E-8 

8E-9 

^ BE* I 
0.4E-9 

2E-9 

OEO, 

a) 

top surface 

bottom surface 

05      TO    15    20    25    30    35    40 

100 b) 

80 
M 

g 40 
a. 

20 

>  5  10 15 20 25 30 35 40 

1500 c) • 6E5 d) 

1200 • 5E5 •  

900 

600 

f 
,0, 

> 

4E5 

3E5 

2E5 ~ 
300 

1E5 

OEO, 0 

K 
ul )  5 10 15 20 25 30 35 40 )  5 10 15 20 25 30 35 40 

x( cm) x(cm) 

Figure 25:  Macroscopic properties along the channel-wedge solid surfaces:  a) density, b) 
pressure, c) temperature, d) magnitude of velocity. 
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Figure 26: Velocity profiles at various x-locations along the channel. 
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Figure 27: Temperature profiles at various x-locations along the channel. 
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Figure 28: Comparison of calculated normalized pressure distribution near the top leading 
edge of the channel to that of weak viscous interaction theory. A = 0.5(7 - 1)0.664(1 + 
2.6TW/T0). 
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Figure 29:   Comparisons of surface properties with data from Chpoun et al., (1993).   a) 
Pressure, b) Velocity. 
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Figure 30: Distributions of skin friction coefficient and Stanton number along the top and 
bottom surface of the channel. 
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Figure 31: Comparisons of DSMC-calculated and Reynolds analogy Stanton number distri- 
butions: a) top surface, b) bottom surface. 
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